Tracking the Internet's BGP Table

Geoff Huston Telstra

November 2000

Methodology

- The BGP table monitor uses a router at the boundary of AS1221 which has a default-free BGP routing table
- Capture the output from "show ip bgp" every hour
- Perform analysis of the data (and then discard the raw dump!)
- Update reports at http://www.telstra.net/ops/bgp

Phases of Growth

Growth Characteristics

 Short term route fluctuation is an absolute value (not a % of total routes) of 1,000 – 2,000 routes

Routed Address Space

Fluctuation is due to announcement / withdrawals of /8 prefixes 11 months of data does not provide clear longer growth characteristic

Routed Address Space (/8 Corrected)

Average size of a routing entry

The BGP routing tale is growing at a faster rate than the tate of growth of announced address space

Number of AS's in the table

AS Number Trend Models

Best fit model is an exponential model using 12 months of data

AS Number Use - Extrapolation

Number of distinct AS Paths

Observations for 99/00

- Linear rise in routed address space 5M x /32 / month
- Exponential rise in number of AS's
 3.5% growth / month (151% / year)
- <u>Exponential</u> rise in number of route advertisements
 3% growth / month (140% / year)
- Exponential rise in the number of routed addresses
 0.6% growth / month (107% / year)

Multi-homing on the rise?

 Track rate of CIDR "holes" – currently 35% of all route advertisements are routing 'holes"

T his graph tracks the number of address prefix advertisements which are part of an advertised larger address prefix

Prefix Growth – Aug 00 to Oct 00

	/16	6553	->	6670	absolute	growth	=	117,	relative	=	1.79%
	/17	889	->	936	absolute	growth	=	47,	relative	=	5.29%
	/18	1763	->	1884	absolute	growth	=	121,	relative	=	6.86%
	/19	5704	->	5984	absolute	growth	=	280,	relative	=	4.91%
	/20	3423	->	3854	absolute	growth	=	431,	relative	=	12.59%
	/21	3621	->	3856	absolute	growth	=	235,	relative	=	6.49%
	/22	5415	->	5870	absolute	growth	=	455,	relative	=	8.40%
	/23	7298	->	7788	absolute	growth	=	490,	relative	=	6.71%
	/24	49169	->	52449	absolute	growth	=	3280,	relative	=	6.67%
	/25	208	->	436	absolute	growth	=	228,	relative	=	109.62%
	/26	334	->	606	absolute	growth	=	272,	relative	=	81.44%
	/27	469	->	667	absolute	growth	=	198,	relative	=	42.22%
	/28	357	->	452	absolute	growth	=	95,	relative	=	26.61%
	/29	579	->	764	absolute	growth	=	185,	relative	=	31.95%
	/30	746	->	1026	absolute	growth	=	280,	relative	=	37.53%

The largest significant relative growth in recent times is /20, tracking the allocation policy change in the RIRs

While the absolute number is low, the largest relative growth is in /25 prefixes, and /25 to /30 represent the greatest area of prefix growth in relative terms

Tentative Conclusions

- BGP table size will continue to rise exponentially
- AS number deployment growth will exhaust 64K AS number space in 2005 if current growth trends continue
- Multi-homing at the edge of the Internet is on the increase
- The interconnectivity mesh is getting denser
 - The number of AS paths is increasing faster than the number of AS's

Tentative Conclusions (Cont)

- Inter-AS Traffic Engineering is being undertaken through routing discrete prefixes along different paths (the routing mallet!)
- RIR allocation policy (/19, /20) is driving the per-prefix length growth
- More noise (/25 and greater) in the table, but the absolute level of noise is low (so far)