Tracking the Internet's BGP Table

Geoff Huston
Telstra

November 2000

Methodology

- The BGP table monitor uses a router at the boundary of AS1221 which has a default-free BGP routing table
- Capture the output from "show ip bgp" every hour
- Perform analysis of the data
(and then discard the raw dump!)
- Update reports at http://www.telstra.net/ops/bgp

Phases of Growth

Growth Characteristics

- Short term route fluctuation is an absolute value (not a \% of total routes) of 1,000-2,000 routes

Routed Address Space

F luctuation is due to announcement / withdrawals of / 8 prefixe 11 months of data does not provide clear longer growth characteristic

Routed Address Space (/8 Corrected)

Average size of a routing entry

Number of AS's in the table

E xponential growth is evident in a longer termview of the $A S$ deployment rate

AS Number Trend Models

B est fit model is an exponential model using 12 months of data

Number of distinct AS Paths

Observations for 99/00

- Linear rise in routed address space
$5 \mathrm{M} \times / 32$ / month
- Exponential rise in number of AS's
3.5% growth / month (151\% / year)
- Exponential rise in number of route advertisements
3% growth / month (140\% / year)
- Exponential rise in the number of routed addresses 0.6\% growth / month (107\% / year)

Multi-homing on the rise?

- Track rate of CIDR "holes" - currently 35\% of all route advertisements are routing "holes"

T his graph tracks the number of address prefix advertitements which are part of an advertised larger address prefix

Prefix Growth - Aug 00 to Oct 00

	/16	6553	->	6670	absolut	growth =	117,	relativ		1.79\%
	/17	889	-	936	absolut	growth	47,	relative		5.29\%
	/18	1763	->	1884	absolu	growth	121,	relative		6.86\%
	/19	5704	->	5984	absolut	growth	280,	relative		4.91\%
	120	3423	->	3854	absolut	growth	431,	relative		12.59\%
	121	3621	->	3856	absolut	growth	235,	relative		6.49\%
	122	5415	->	5870	absolut	growth	455,	relative		8.40\%
	123	7298	->	7788	absolut	growth	490,	relative		6.71\%
	124	49169	->	52449	absolut	growth =	3280,	relative		6.67\%
	125	208	->	436	absolut	growth =	228,	relative		109.62\%
	/26	334	->	606	absolut	growth =	272,	relative		81.44\%
	/27	469	->	667	absolut	growth =	198,	relative		42.22\%
$\sqrt{ }$	128	357	->	452	absolut	growth =	95,	relative		26.61%
	/29	579		764	absolut	growth =	185,	relative		31.95\%
	130	746	->	1026	absolut	growth =	280,	relative		37.53\%

[^0]
Tentative Conclusions

- BGP table size will continue to rise exponentially
- AS number deployment growth will exhaust 64K AS number space in 2005 if current growth trends continue
- Multi-homing at the edge of the Internet is on the increase
- The interconnectivity mesh is getting denser
- The number of AS paths is increasing faster than the number of $A S$'s

Tentative Conclusions (Cont)

- Inter-AS Traffic Engineering is being undertaken through routing discrete prefixes along different paths (the routing mallet!)
- RIR allocation policy (/19, /20) is driving the per-prefix length growth
- More noise (/25 and greater) in the table, but the absolute level of noise is low (so far)

[^0]: T he largest significant relative growth in recent times is / 20, tracking the allocation policy change in the R IR s

