

K-Root Name Server Operations

Andrei Robachevsky

andrei@ripe.net

Outline

- Root Server System brief update
 - Architecture
 - Current locations
 - Anycast deployment
- K.root-servers.net Server
 - Major milestones
 - Current status
 - K-Anycast deployment

Root Server System

- Provides nameservice for the root zone
 - Root DNS node with pointers to the authoritative servers for all top-level domains (gTLDs, ccTLDs).
- Thirteen name server operators
 - Selected by IANA
 - Diversity in organisations and location
 - 13 is a practical limit
 - a.root-server.net ÷ m.root-server.net equal publishers
 - All thirteen are authoritative servers for the root zone
- An average client comes here < 8 times per week

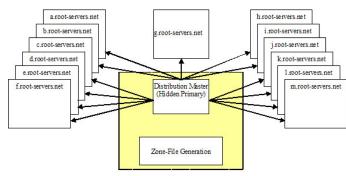
Root servers and operators

Thirteen nameservers, selected before 1997

```
Verisign
a.root-servers.net
- b.root-servers.net
                            USC-ISI
                            Cogent Communications
- c.root-servers.net
- d.root-servers.net
                            University of Maryland
- e.root-servers.net
                            NASA
- f.root-servers.net
                            ISC
                            US DOD (DISA)
- g.root-servers.net
                            US DOD (ARL)
- h.root-servers.net
                            Autonomica
- i.root-servers.net
                            Verisign
- j.root-servers.net
- k.root-servers.net
                            RTPF NCC
- 1.root-servers.net
                            ICANN
                            WIDE Project
- m.root-servers.net
```

Look at www.root-servers.org

Ripe Location of 13 DNS Root Servers (pre-anycast era)



Evolution of Root System Architecture

- Public primary nameserver
 - a.root-servers.net primary
 - Other 12 are secondary
 - NSI generates the zone (Verisign since 2000)

- Hidden distribution master
- All 'letter" servers are equal
- Authenticated transactions between the servers (TSIG)
- Wide deployment of anycast (2003)

oot-servers net

Root Nameserver

Root Nameserver

Root Name server

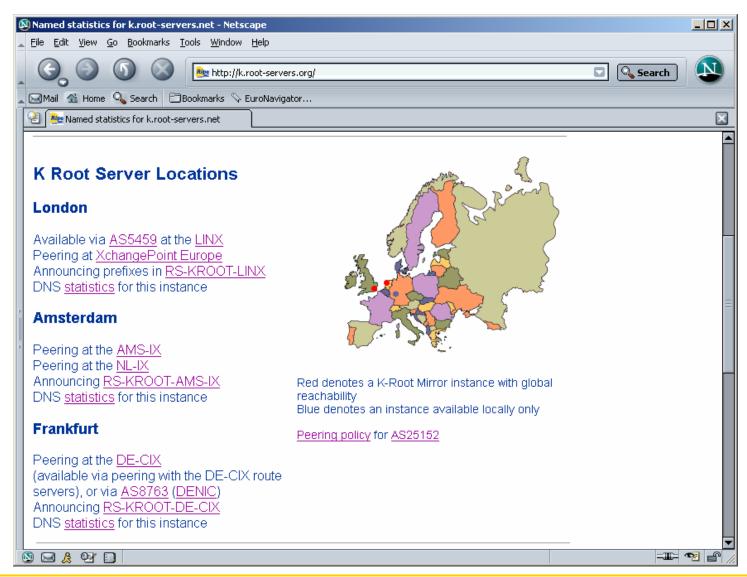
Root Nameserver

Anycasting

- Point-to-point communication between a single client and the "nearest" destination server
 - Basics described in RFC 1546 in 1993
- "Cloning" a server
 - Multiple locations
 - Same operator
 - Same IP address belonging to the operator
 - Identical data
- Benefits
 - Distribution
 - Performance
 - Resilience
 - Redundancy

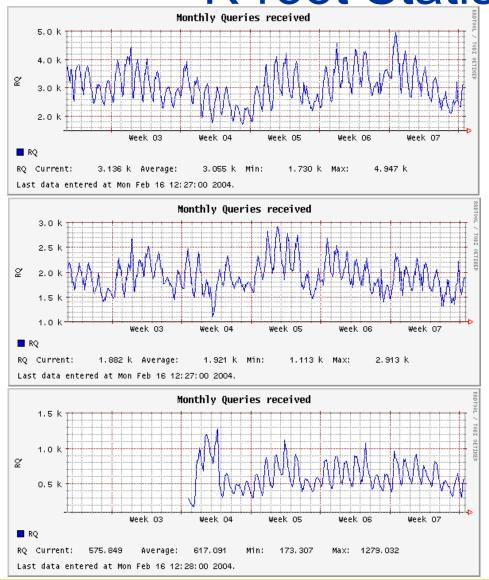
Ripe Location of 13 DNS Root Servers (spot the differences)

Ripe Location of 13 DNS Root Servers (spot the differences)



K-root Milestones

- Operated by RIPE NCC since May 1997
 - Hosted by LINX in London
- Running NSD since February 2003
 - Increased software diversity and performance
- Anycast since July 2003
 - Two global instances: London and Amsterdam
- Wider anycast deployment (2004)
 - 3-5 global nodes
 - 10-15 local nodes
 - Frankfurt, 19 January 2004



K-root Locations

K-root Statistics

London

Amsterdam

Frankfurt

"Local" Mirror Instances

Objectives

- Improving access to K for a significant ISP community
- Isolating impact of an "external" DDoS
- Localising impact of a "local" DDoS

Location

- Well connected points with significant ISP community (IXP, etc.)
- Improved responsiveness for the members of the IX
- Improved resilience of the whole system for others

Model

- Hosted by a neutral party
- Open peering policy
- Fully funded by a hosting party

Operations

Andrei Robachevsky

Exclusively performed by the RIPE NCC

http://www.ripe.net

"Global" Mirror Instances

- Ideally located at topologically equidistant places
 - In practice there are not so many choices
- Globally reachable
 - But less preferable then "local" mirror instances
- Powerful in terms of connectivity and CPU
 - Have to sustain DDoS and local nodes failures
- The same management model as for local nodes
 - RIPE NCC is the operator
- Different funding model
 - No distinguished group of local beneficiaries
 - Costs are shared between the host and the RIPE NCC

More Information

- Root operators
 - http://www.root-servers.org
 - http://[a-m].root-servers.org
 - http://dnsmon.ripe.net
- Root server analysis
 - http://www.caida.org/projects/dns-analysis/
- Anycasting
 - Host Anycasting Service, RFC1546, http://www.ietf.org/rfc/rfc1546.txt
 - Distributing Authoritative Name Servers via Shared Unicast Addresses. RFC3258, http://www.ietf.org/rfc/rfc3258.txt

More Information (cont.)

- K-root
 - http://k.root-servers.org
- K-root anycasting
 - Distributing K-Root Service by Anycast Routing of 193.0.14.129, RIPE- 268, http://www.ripe.net/ripe/docs/ripe-268.html
 - General Requirements and Guidelines,
 http://k.root-servers.org/hosting-guidelines-200311.html
 - Contact at <u>k-anycast@ripe.net</u>

http://www.ripe.net/presentations