IPv6 Distributed Security IPv6 SIG Hanoi, APNIC20 Sept. 2005

Alvaro Vives (alvaro.vives@consulintel.es)
Jordi Palet (jordi.palet@consulintel.es)

Motivation

- How would the deployment of IPv6 affect the security of a network?
- IPv6 enabled devices and networks bring some issues to be taken into account by security administrators:
 - End-2-end communications
 - IPsec in all IPv6 stacks
 - Increased number of IP devices
 - Increased number of "nomadic" devices
- Identify IPv6 Issues that justify the need of a new security model

What is Security?

- Security in the "big scope" of the word, trying to include as much as possible
- A host, a network or some information, will be secure when no attacks could succeed against them
- A success will mean compromise of availability, integrity, confidentiality or authenticity
- The realistic objective is to be as much secure as possible in a precise moment

Network-based Security Model (I)

■ THREAT ■ Sec. Policy 1 Sec. Policy 2 Policy Enforcement Point (PEP)

Network-based Security Model (II)

Main Assumptions:

- Threats come from "outside"
- Everybody from the same LAN segment is trusted
- Protected nodes won't go "outside"
- No backdoors (ADSL, WLAN, etc.)
- The hosts will not need to be directly accessed from outside (at least not in a general manner)

Network-based Security Model (III)

Advantages:

- Simplicity and easiness
- Minimum points of configuration
- Few/no protocols and mechanism to implement "security"

Network-based Security Model (IV)

Main Drawbacks:

- Centralized model: Single point of failure in terms of performance and availability
- Do not address threats coming from inside (even if more dangerous)
- FW usually acts as NAT/Proxy: No end-to-end
- Special solutions are needed for Transport Mode Secured Communications
- Virtual organizations (GRIDs) don't work
- Lack of secure end-to-end prevents innovation

Host-based Security Model (I)

■ THREAT • Sec. Policy 1 C Sec. Policy 2 Policy Enforcement Point (PEP)

Host-based Security Model (II)

■ THREAT ■ Sec. Policy 1 **©** Sec. Policy 2 **Policy Enforcement Point (PEP)**

Host-based Security Model (III)

 BASIC IDEA: Security Policy centrally defined and distributed to PEPs. The network entities will authenticate themselves in order to be trusted.

THREE elements:

- Policy Specification Language
- Policy Exchange Protocol
- Authentication of Entities

Host-based Security Model (IV)

Main Assumptions:

- Threats come from anywhere in the network
- Each host can be uniquely and securely identified
- Security could be applied in one or more of the following layers: network, transport and application

Main Drawbacks:

- Complexity
- Uniqueness and secured identification of hosts is not trivial
- Policy updates have to be accomplished in an efficient manner
- A compromised host still is a problem
 - But "isolating" it could be a solution

Host-based Security Model (V)

Main Advantages:

- Protects against internal attacks
- Don't depend on where the host is connected
- Still maintain the centralized control
- Enables the end-2-end communication model, both secured or not
- Better decision could be taken based on host-specific info.
- Enables a better collection of audit info

IPv6 Issues (I)

1. End-2-end

Any host must be reachable from anywhere.
 NAT/Proxy is not desired.

2. Encrypted Traffic

For example IPsec ESP Transport Mode Traffic

3. Mobility

 Both Mobile IP and the increase of "portable" IP devices will mean they will be in "out-of-control" networks

4. Addresses

- Much more addresses -> hosts with more than one
- Randomly generated addresses
- Link-local Addresses
- Multicast

IPv6 Issues (II)

5. Neighbor Discovery

- RA, RS, NA, NS and Redirect Messages could be used in a malicious way -> SEND
- 6. Routing Header
- 7. Home Address Option
- 8. Embedded Devices
 - Number of devices with almost no resources to perform security tasks -> should be taken into account in a possible solution

Thanks!

Questions?

