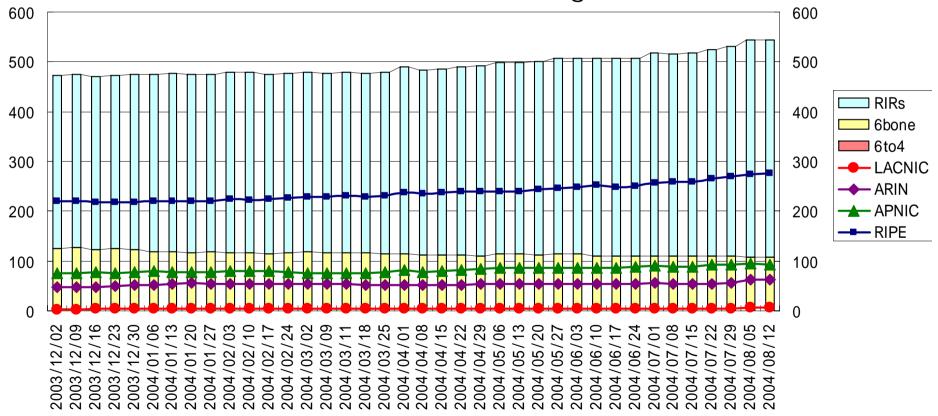
# A Proposal for IPv6 IRR service at APNIC

Katsuyasu TOYAMA
NTT / JPNIC IRR planning team
Sep. 2, 2004
APNIC18 database SIG @ Nadi, Fiji


## Background

- IPv6 network is being deployed gradually, but still it is not so widely used.
  - it will be inevitably used in future.

■ IPv6 network is based on almost the same routing architecture as IPv4.

### Advertised IPv6 prefixes

- □ 545 prefixes on Aug. 12, 2004 at NTTv6.NET
  - Observed from Dec. 2, 2003 to Aug. 12, 2004



## Background

- IPv6 network is being deployed gradually, but still it is not so widely used.
  - it will be inevitably used in future.

IPv6 network is based on almost the same routing architecture as IPv4.

## Advertised prefixes (RIRs allocated) and inet6num objects in whois database

- 84% of prefixes are "correctly" advertised.
- no bogus routes
- seems to be fewer punching holes comparing with IPv4

|                                 | •        |                  | •              | •                           |                  |
|---------------------------------|----------|------------------|----------------|-----------------------------|------------------|
|                                 | whois-db | to inet6num in   | Matching       | only in 2001::/16           | prefixes         |
| 366<br>(83.7%)<br>44<br>(10.1%) | no match | more<br>specific | exact<br>match | # of advertised prefixes(%) | Prefix<br>length |
|                                 | 0        | 0                | 1              | 1(0.2%)                     | /27              |
|                                 | 0        | 0                | 365            | 365(83.5%)                  | /32              |
|                                 | 0        | 2 (/32)          | 0              | 2(0.5%)                     | /33              |
|                                 | 0        | 31(/32)          | 11             | 42(9.6%)                    | /35              |
|                                 | 0        | 0                | 1              | 1(0.2%)                     | /42              |
|                                 | 0        | 1(/42)           | 0              | 1(0.2%)                     | /44              |
|                                 | 0        | 2(/32)           | 15             | 17(3.9%)                    | /48              |
| (6.2%)                          | 0        | 1(/32)           | 0              | 8(1.8%)                     | /64              |
|                                 |          | 7(/48)           |                |                             |                  |
|                                 | 0        | 40               | 397            | 437(100%)                   | Sum              |

#### **Problems**

- When widely deployed, IPv6 network will have the same troubles as the current IPv4 networks.
  - instabilities due to misconfigured routing
  - malicious attack such as route hijacking



To prevent misconfigured or malicious routing information, a mechanism verifying routing information is required.

#### Solution

- □ IPv6 IRR will serve as the database for:
  - verifying advertised prefixes
  - the list of contact points, at least.
- Of course,
  - if it is always correct and up-to-date.
  - if it covers all the routing information.

## Proposal

A framework of IPv6 IRR should be defined.

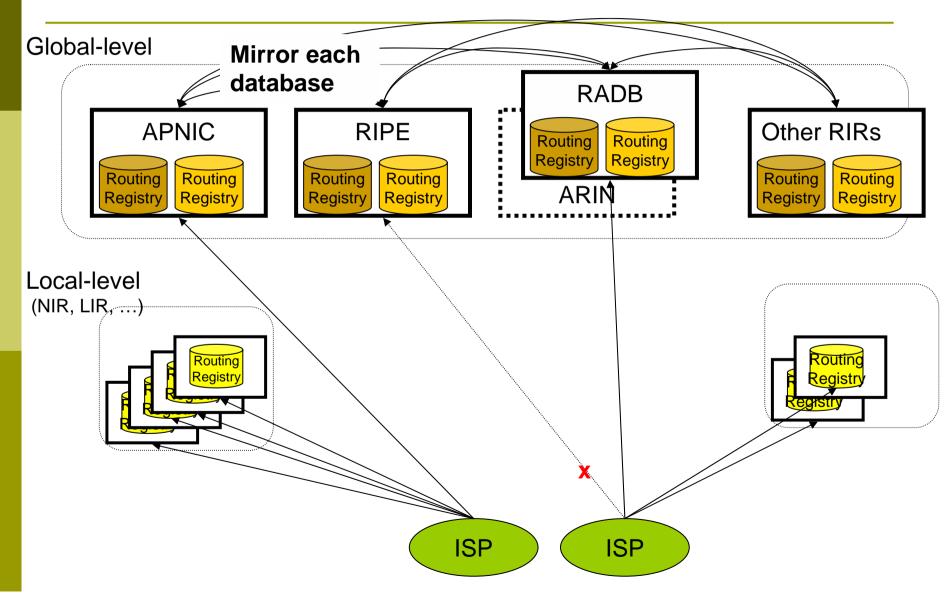
■ IPv6 IRR service should be launched by APNIC.

■ IPv6 IRR should be promoted to the other RIRs.

## Advantage/Disadvantage

#### Advantage

- Contribution to the stable routing on IPv6 network.
- Earlier RIRs start, more easily IPv6 IRR is deployed.


#### Disadvantage

- Increased operation cost due to instable routing, which should be paid by service providers.
  - And this will cause customers should pay more

## Outstanding Issues

- Framework for IPv6 IRR, such as
  - who administrate the IRR
    - □ RIR, NIR, LIR,...?
  - what kind of architecture of the IRRs
    - □ like current IPv4 IRR?
  - how to keep the objects in IRR up-to-date?
    - by some rules/procedures or some techniques?
- Schedule to provide IPv6 IRR service
- To discuss above, it is required to establish a working group.

#### One candidate of the architecture



#### One candidate of the architecture

#### Global-level

- Routing Registries for exchanging aggregated routes which are required to advertise in global level.
  - currently prefix length should be less than or equal to /32.
  - to prevent the global routing table from expanding.

#### One candidate of the architecture

#### Local-level

- Routing Registries for exchanging in a specific closed user group, such as:
  - IX customers who use more-specific routes that are exchanged at this IX.
  - National Registries who require users to register the routing information that is exchanged in the country.

#### Schedule

#### Framework discussion

- on database-sig and/or policy-sig mailing list (Sep. 2004)
   Dec. 2004)
  - draft framework for IPv6 IRR
  - sometimes closely related with global routing policy
- promotion to other RIRs (Jan. 2005 ~ Mar. 2005)

#### ■ IPv6 IRR service by APNIC

- in parallel to framework discussion
- jointly verify the implementation of IRR server software (Sep. 2004 ~ Dec. 2004)
- launch the service after the consensus among RIRs.

#### Summary

- We proposed:
  - A framework of IPv6 IRR should be defined.
  - IPv6 IRR service should be launched by APNIC.
  - IPv6 IRR should be promoted to the other RIRs.
- To achieve them, it is required to establish a working group for this discussion.

Thank you! and any comments?

- Special thanks to:
  - JPNIC IRR planning team
    - Tomoya YOSHIDA (Chairperson)
    - Kuniaki KONDO (ex-Chairperson)
    - Masashi ETO
    - Ken NAGAHASHI
    - Junichi MATSUMOTO
    - ... and JPNIC staff
  - NTT Labs.
    - Yuichi TEZUKA
    - ... and IPv6 research group