Securing the Border Gateway Protocol Using S-BGP

APNIC Open Policy Meeting Routing SIG Kyoto, Japan

Dr. Stephen Kent Chief Scientist - Information Security kent@bbn.com

Background

I assume this audience knows

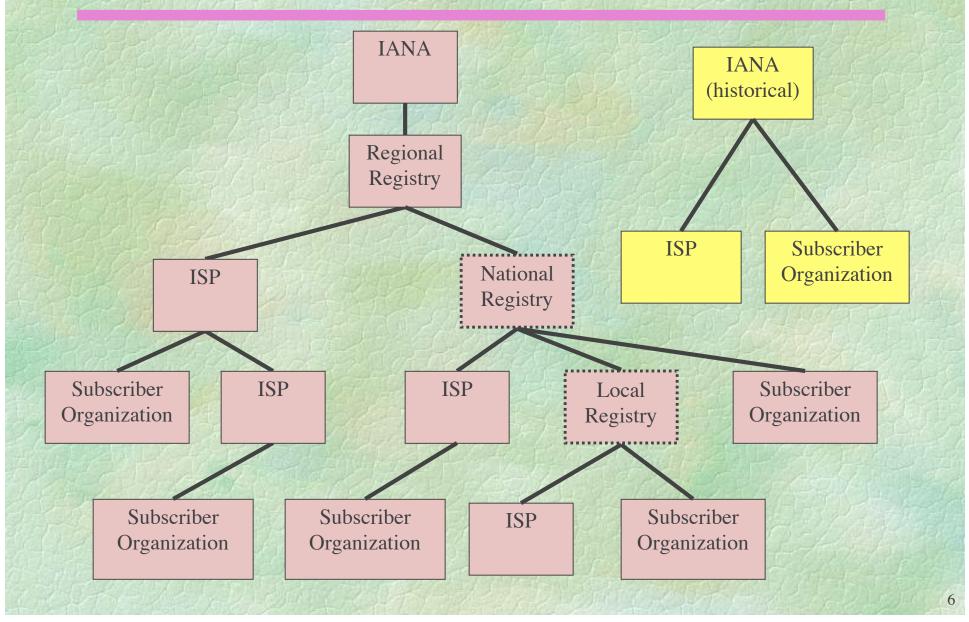
- How BGP works
- Why security for BGP is a concern
- What are critical BGP security requirements
- Why "trust" is not the preferred basis for determining claims about prefix holders, origination, and routes
- The need for incremental deployment capabilities for proposed solutions

This presentation will focus on just one proposed solution: S-BGP

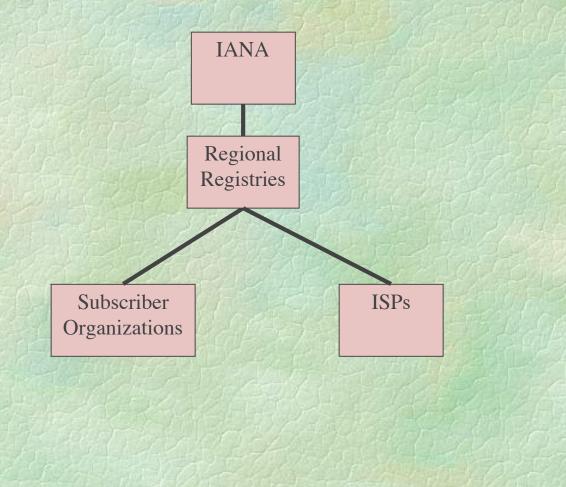
Secure BGP (S-BGP)

- S-BGP is an architectural solution to the BGP security problems described earlier
- S-BGP represents an extension of BGP
 - It uses a standard BGP facility to carry additional data about paths in UPDATE messages
 - It adds an additional set of checks to the BGP route selection algorithm
- S-BGP avoids the pitfalls of transitive trust that are common in today's routing infrastructure
- S-BGP mechanisms exhibit the same dynamics as BGP, and they scale commensurately with BGP

S-BGP Design Overview


S-BGP makes use of:

- **IPsec** to secure point-to-point communication of BGP control traffic
- Public Key Infrastructure to provide an authorization framework representing prefix holders and owners of AS #'s
- Attestations (digitally-signed data) to represent authorization information
- S-BGP requires routers to:
 - Generate an attestation when generating an UPDATE for another S-BGP router
 - Validate attestations associated with each UPDATE received from another S-BGP router


IPsec for S-BGP

- S-BGP uses IPsec to protect all BGP traffic between neighbor routers
- As used here, IPsec provides cryptographically enforced data authentication, data integrity, and anti-replay features
- IPsec represents a significant improvement over the MD5 TCP checksum option used in some contexts today
 - Automated key management
 - More comprehensive security guarantees
 - Better, standards-based cryptographic protection

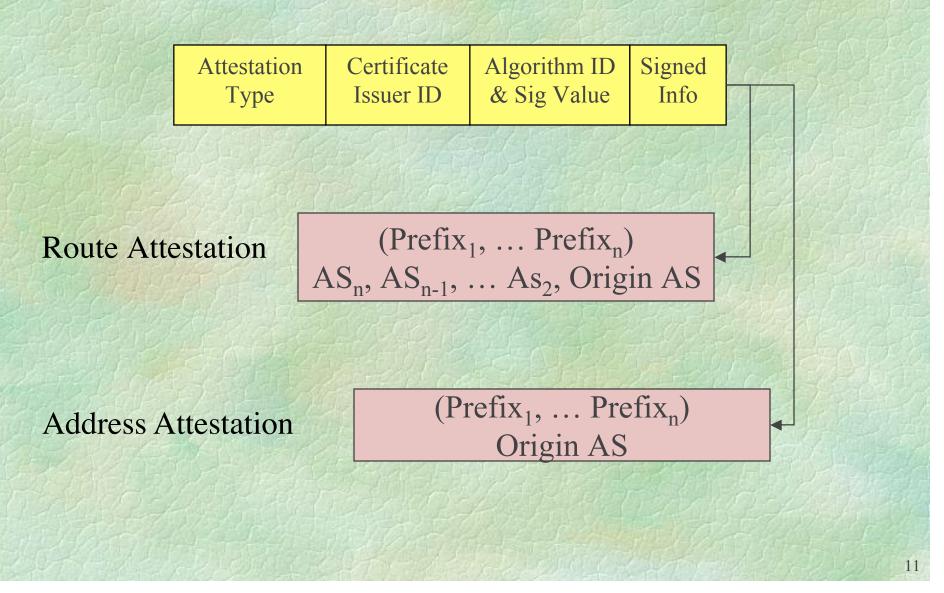
Prefix Allocation

AS # Allocation Hierarchy

7

A PKI for S-BGP

- Public Key (X.509) certificates are issued to ISPs and subscribers to identify AS # owners and prefix holders, using RFC 3779 syntax
- Prefixes and public keys in certificates are used to verify authorization of address attestations
- Address attestations, AS #'s and public keys from certificates are used as inputs to verification of UPDATE messages
- The PKI does NOT rely on any new organizations that require trust; it just makes explicit and codifies the relationships among regional, national and local registries, ISPs, and subscribers


S-BGP PKI Characteristics

- S-BGP certificates do not identify ISPs per se
 Most of these certificates bind AS #'s and prefixes to public keys, not to meaningful IDs (avoids name problems re mergers, bankruptcy, ...)
- Each RIR (NIR/LIR) acts as a CA to issues certificates that allocate prefixes and AS #'s
- Each ISP acts as a CA to issue certificates to each entity to which it assigns prefixes, but only if the entity executes S-BGP
- ISPs also issue certificates to their S-BGP routers, and operations personnel who interact with the S-BGP repositories

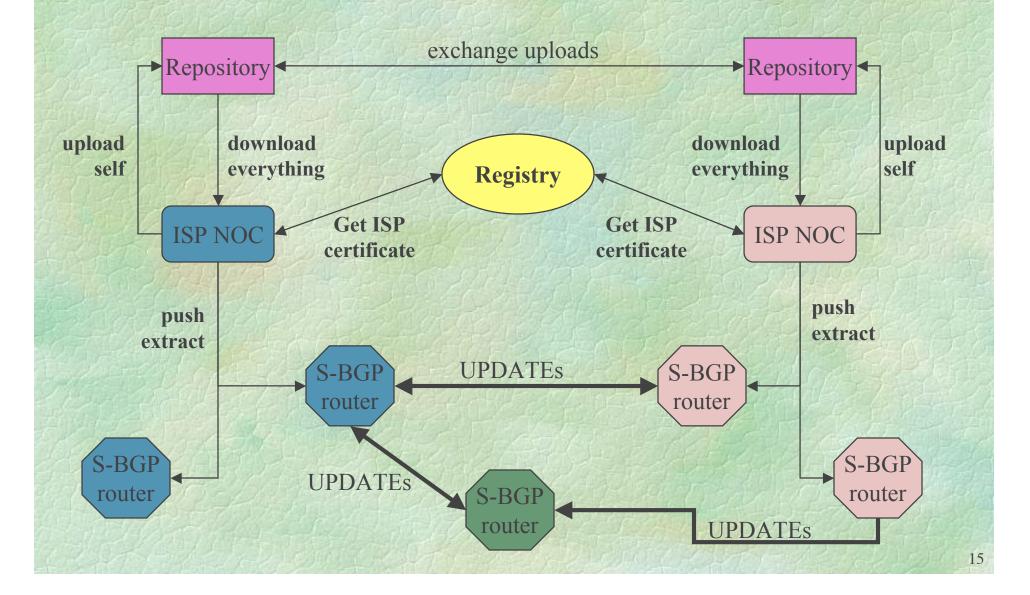
Two Types of Attestations

- An Address Attestation (AA) is issued by the "owner" of one or more prefixes (a subscriber or an ISP), to identify the first (origin) AS authorized to advertise the prefixes
- A Route Attestation (RA) is issued by a router on behalf of an AS (ISP), to authorize neighbor ASes to use the route in the UPDATE containing the RA
 These data structures share the same basic format

Simplified Attestation Formats

Processing an S-BGP UPDATE

- When an S-BGP router generates an UPDATE for a recipient neighbor that implements S-BGP, it generates a new RA that encompasses the path and prefixes plus the AS # of the neighbor AS
- When an S-BGP router receives an UPDATE from an S-BGP neighbor, it:
 - Verifies that its AS # is in the first RA
 - Validates the signature on each RA in the UPDATE, verifying that the signer represents the AS # in the path
 - Checks the corresponding AA to verify that the origin AS was authorized to advertise the prefix by the prefix holder


Housekeeping for S-BGP

- Every S-BGP router needs access to all the certificates, CRLs, and address attestations so that it can verify any RA
 These data items don't belong in UPDATE messages
 S-BGP uses replicated, loosely synchronized repositories to make this data available to ISPs and organizations
- The repository data is downloaded by ISP/organization Network Operation Centers (NOCs) for processing
 - Each NOC validates retrieved certificates, CRLs, & AAs, then downloads an extracted file with the necessary data to routers
 - Avoids need for routers to perform this computationally intensive processing
 - Permits a NOC to override problems that might arise in distributing certificates and AAs, but without affecting other ISPs

S-BGP PKI Repositories

- ISPs & organizations upload their own new data, download full database, on a daily basis
- Repositories use the PKI to enforce access controls to counter DoS attacks
 - Access granted only to S-BGP users and other repositories
 - An ISP or organization is constrained to prevent overwriting data of another ISP or organization
- Major ISPs could operate repositories for themselves & their subscribers
- Internet exchanges or registries could operate repositories for other ISPs & subscribers
- Note that repositories need not be highly available, e.g., they are NOT accessed in real time by routers

S-BGP System Interaction Example

Residual Vulnerabilities

- S-BGP cannot ensure that a router withdraws a route when the only path (known to the router) for the route is withdrawn by a neighbor
- S-BGP does not ensure timeliness of UDATEs, except to the extent that RAs time out
 - This means that a router could retransmit an UPDATE after it withdrew a route, without having been authorized to re-advertise the route

What Exists Today?

S-BGP code

- Implemented on MRT code base
- Includes basic policy controls for incremental deployment

➢NOC Tools

- Mini-registration authority for certificate requests
- AA generation
- Repository upload/download tools
- Certificate, CRL & AA validation & extract file generation

み Repository

- PKI-based access controls for access & uploads
- Primitive management capabilities, no synchronization

➢ CA for S-BGP PKI

• A high assurance CA on an SELinux base processes X.509 certificate requests with S-BGP private extensions

Summary

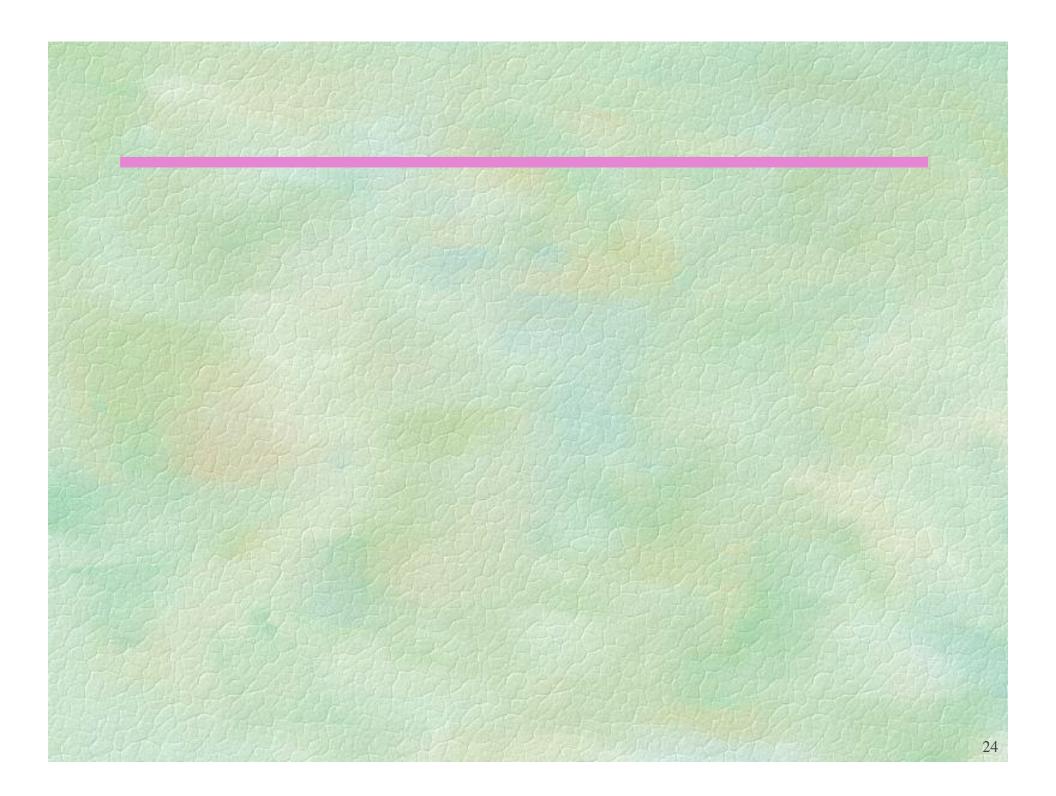
- S-BGP addresses the architectural security problems of BGP and supports verification of route changes in realtime
- The impact on daily Registry & ISP operations is minimal, although training will be needed
- The S-BGP PKI leverages existing authorization relationships and creates no new ones
- Routers may require hardware upgrades, for crypto, even if not for memory
- The security model embodies the principle of least privilege, providing containment in the face of compromise

Questions?

http://www.ir.bbn.com/projects/s-bgp

Additional Slides

Deploying S-BGP


Router software must implement S-BGP Router hardware must have appropriate storage & digital signature processing capabilities Registries must assume CA responsibilities for address prefixes and AS # allocation **ISPs** and subscribers that execute BGP must upgrade routers, must act as CAs, and must interact with repositories to exchange PKI & AA data

Router Memory & Performance

- Routers need enough memory to hold route attestations in Adj-RIBs and Loc-RIB, plus storage for address attestation and processed certificates
 Signature generation and validation pose a modest burden in a steady state context, well within the capabilities of CPUs used for router management
 But, to accommodate surge volume during attacks, and to better protect router keys, use of a crypto
 - accelerator is preferable
- RA validation heuristics, e.g., deferred UPDATE validation, can reduce the crypto processing burden

Deferred UPDATE Validation

- If validating every UPDATE poses too great a processing burden on a router, it can defer processing most UPDATEs
 Only if an UPDATE would result in a new Loc-RIB entry is it necessary to validate it
- Thus, a router with many peers, one that would receive the most UPDATEs, can defer validation for the vast majority of these messages
- Also, if a router filters inbound UPDATEs using local policy info, it may ignore many UPDATEs anyway!
- If validation is deferred, the router should at least check to verify that the RAs were current when the UPDATE was received

