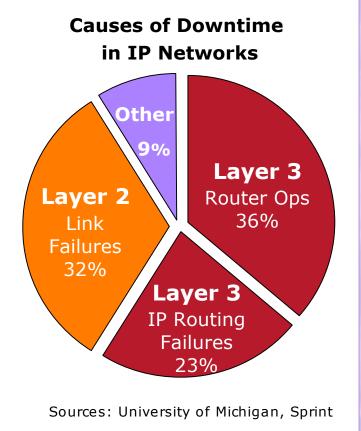
Real-World Uses of Route Analytics

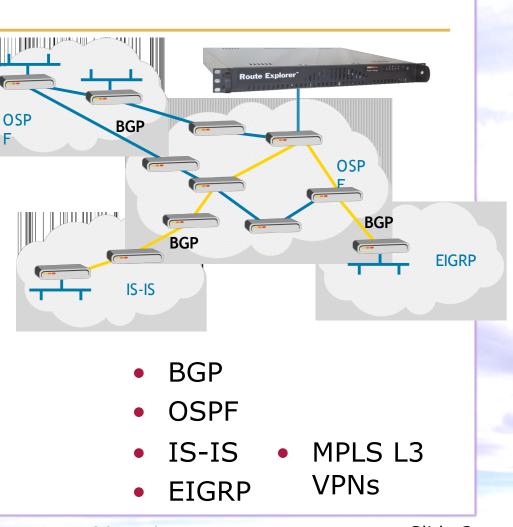
Greg Hooten Senior Routing Engineer Packet Design Inc. gahooten@packetdesign.com

Packet Design, Inc.

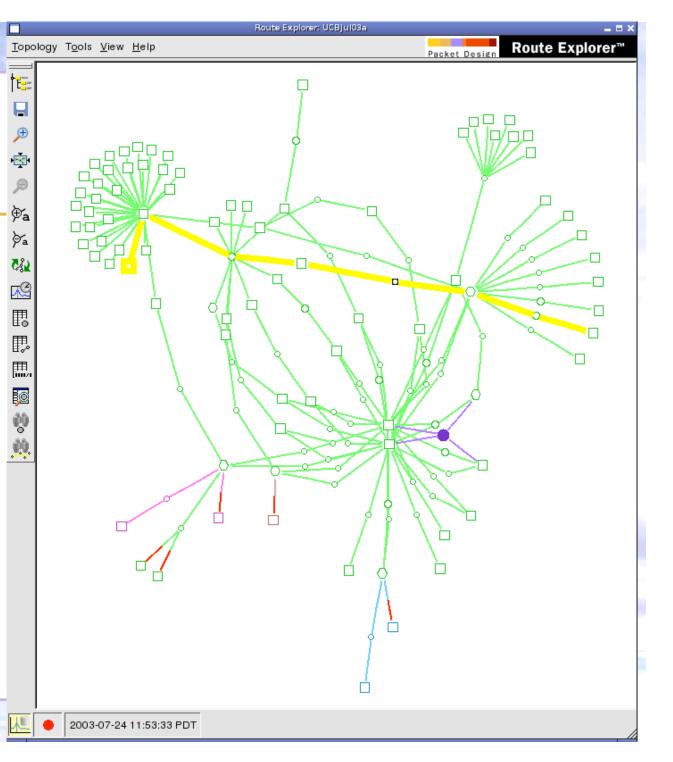

"Harnessing the Intelligence of IP"

- Established in 2003
- Headquarters in Palo Alto, CA
- Fourth major release of Route Explorer[™] product
- Pioneer and leader in Route Analytics for IP networks
- More than 100 customers worldwide
- Demo station 2 at Apricot

Why Route Analytics? IP Routing Lacks Real-Time Management Visibility

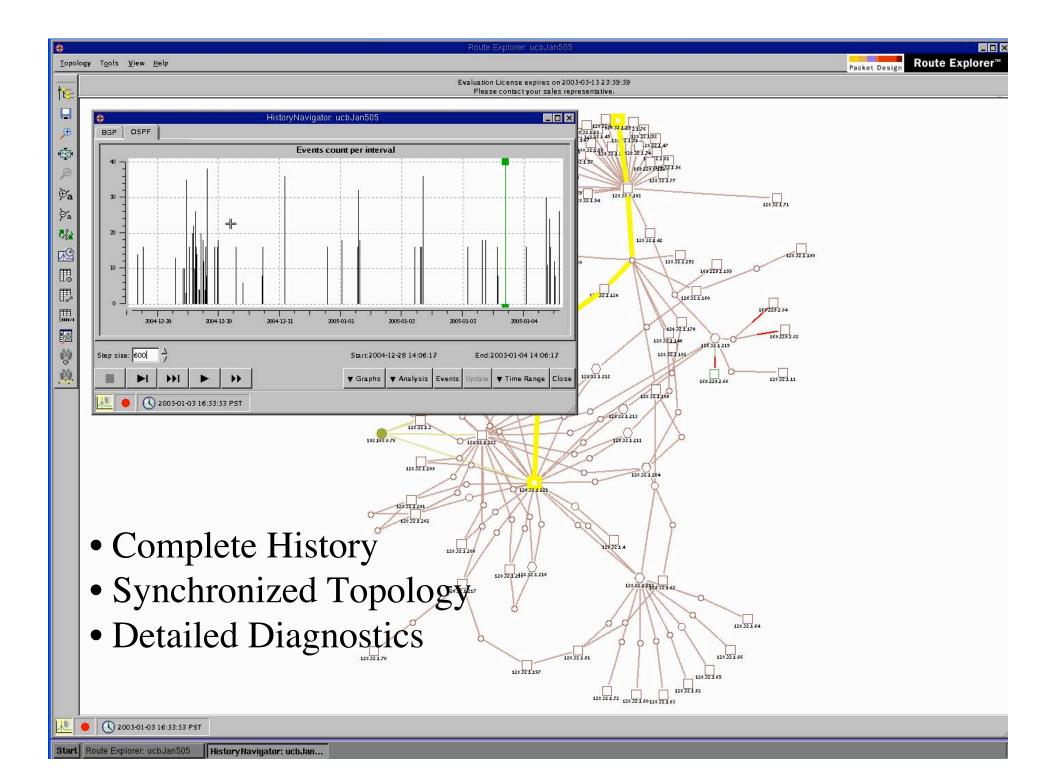

- Routing is too dynamic to measure via SNMP polling intervals
- No existing network management tools provide visibility into IP routing and Layer 3 topology
 - SNMP only sees interfaces and links
 - Application performance management measures end to end statistics
 - Planning tools are primarily offline
 - Traffic analysis measures usage per link and end to end

Packet Design


Route Analytics Defined

- Peers passively with routers
- Records all routing updates in real-time
- Stores complete history
- Computes topology across protocols, Areas, AS
- Real-time, network-wide analysis of IP routing
- Monitoring, Reporting, Alerting, Troubleshooting
- What-if analysis and modeling

Network Map


- Green, blue and magenta are different OSPF areas
- Purple are BGP speakers
- Red elements are down
- Yellow is a path between two routers

Routers, Links, Prefixes

Packet Design

		-			List of	All Links:	UCBJul03a/05	SPF			
	List of All Route	rs: UCBJul03a/C	ISPF	Filter by: Any 💌						Show	Hide
ilter by: Any				Link		Metric	State	Area			
Router	Туре /	State	Area	128.32.1.209 <- 189.229.2.70			Deute	LLOB MOR	- 028	F/169.229.1	100 100
128.32.1.74	Internal Router	Up	UCBJul03a.O	128.32.1.213 <- 169.229.2.74			Down Down			F/169.229.1	
128.32.1.170	Internal Router	Up	UCBJul03a.O	128.32.1.215 <- 169.229.2.66			Down			F/169.229.	
128.32.1.77	Internal Router	Up	UCBJul03a.O	169.229.2.82 -> 169.229.2.80/29			Down			F/Backbone	
128.32.1.78	Internal Router	Up	UCBJul03a.O	169.229.2.84 -> 169.229.2.80/29			Down			F/Backbone	
128.32.1.79	Internal Router	Up	UCBJul03a.O	128.32.1.1 -> 128.32.0.96/28		100				F/Backbone	
128.32.1.81	Internal Router	Up	UCBJul03a.O	128.32.1.1 -> 128.32.0.96/28		0	Up			F/Backbone	
128.32.1.82	^L Internal Router	Up	UCBJul03a.O	128.32.1.100 -> 128.32.0.112/29		_	Up			F/Backbone	-
	⊟-AreaBR, ASBR					100	Up			F/Backbone F/Backbone	
128.32.1.209	AreaB			List of Prefixes: UCBJul03a/05PF					- = ×		
128.32.1.209	AreaBI Filter by:	Any	-				Sho	w Hid	е	F/Backbone	-
128.32.1.215	AreaB								-	F/Backbone	
128.32.1.215	AreaB Prefix		Router/Net	Attributes	State					F/Backbone	
128.32.1.3	Areab	29.1.164/30	120.32.1.40	Wethc: 20 (AS External)	1 Ob	I OCBJU	103a.05FF/	backbone		F/Backbone	-
128.32.1.130	AreaB	2.1.3/32	100.001.000							F/Backbone	-
	- AreaBh	2.1.3/32	128.32.1.209	Metric: 112 (Area External)	Up			169.229.128.1		F/Backbone	
128.32.1.213	AreaB	2.1.3/32	128.32.1.215	Metric: 111 (Area External)	Up			169.229.128.1		F/Backbone	3
128.32.1.213	AreaB	2.1.3/32	128.32.1.213	Metric: 111 (Area External)	Up			169.229.128.1	76	leload	Clos
128.32.1.223	AreaB	2.1.3/32	128.32.1.3	Metric: 1	Up	UCBJu	103a.OSPF/	Backbone		leioau	CIUS
	- ASBR	29.203.0/25									
128.32.1.221	ASBR	29.203.0/25	128.32.1.209	Metric: 31 (Area External)	Up			169.229.128.1			
128.32.1.4	ASBR	29.203.0/25	128.32.1.215	Metric: 30 (Area External)	Up			169.229.128.1			
128.32.1.1	ASBR	29.203.0/25	128.32.1.213	Metric: 30 (Area External)	Up			169.229.128.1	76		
128.32.1.222	ASBR	29.203.0/25	128.32.1.205	Metric: 10	Up	UCBJu	103a.OSPF/	Backbone			
128.32.1.101	ASBR - 128.32	2.1.4/32									
128.32.1.102	ASBR	2.1.4/32	128.32.1.209	Metric: 22 (Area External)	Up			169.229.128.1			
		2.1.4/32	128.32.1.215	Metric: 21 (Area External)	Up			169.229.128.1			
	128.3	2.1.4/32	128.32.1.213	Metric: 21 (Area External)	Up	UCBJu	103a.OSPF/	169.229.128.1	76		
75 entries	L128.3	2.1.4/32	128.32.1.4	Metric: 1	Up	UCBJu	103a.OSPF/	Backbone			
	E-169.22	29.200.0/25									
	169.2	29.200.0/25	128.32.1.209	Metric: 31 (Area External)	Up			169.229.128.1			
	169.2	29.200.0/25	128.32.1.215	Metric: 30 (Area External)	Up	UCBJu	103a.OSPF/	169.229.128.1	68 🚽		
							Reloa	ad Clo:	se		
	4161 er	ntries								Slide	: 5
	1410101									1	

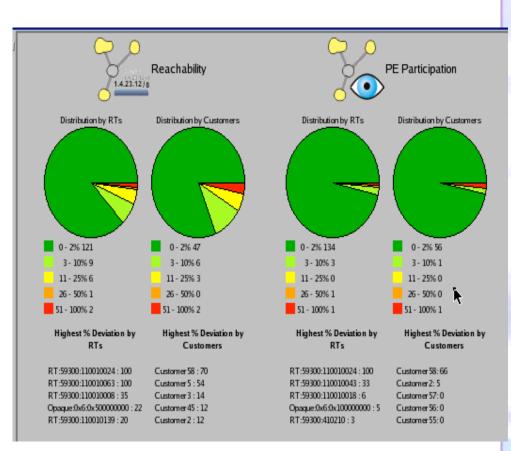
- Large, meshed routed networks
- Networks with multiple Internet peerings
 - large enterprises

Some Real-World Use Cases

- Highlighted:
 - MPLS VPN Per-Customer Layer 3 Monitoring
 - Routing Convergence/Propagation Measurement
 - Peering BGP Root Cause Analysis
- Other Use Cases
 - Change planning and validation
 - Failure scenario analysis
 - Customer forensics
 - Inter-protocol analyses

MPLS VPN Route Analytics Monitors:

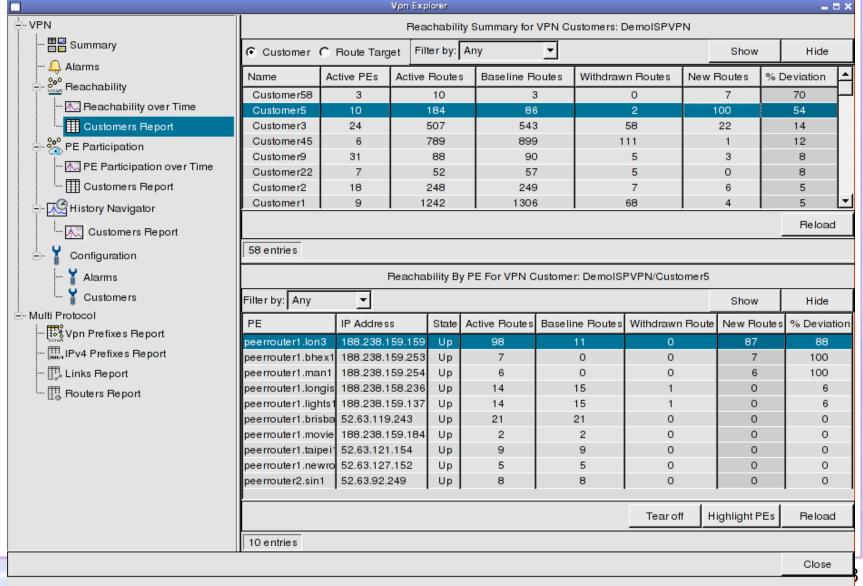
- Per-Customer VPN Reachability
 - "Are all the customer VPN, BGP, IGP (OSPF, IS-IS, EIGRP) routes functioning properly?"
- Per-Customer VPN Privacy
 - Fundamental selling point of MPLS VPNs
 - "Are all customer VPN Route Distinguishers properly configured?"
- Per-Customer VPN Policy
 - "Is the customer's desired routing architecture (Fullmesh, hub and spoke, partial mesh, etc.) working?"


Provider's Concerns

- Customers can leak extra routes and consume precious resources
- Provider needs to monitor the customer's routes and routing activity
- Provider can misconfigure
 - Route Distinguishers: used to distinguish customer routes
 - Route Targets: used to determine intra-VPN routing policy
 - Distributing one customer's routes to another
 - VPN becomes no longer "private".
- Provider needs to monitor PEs, RDs and RTs associated with each customer and flag any deviation

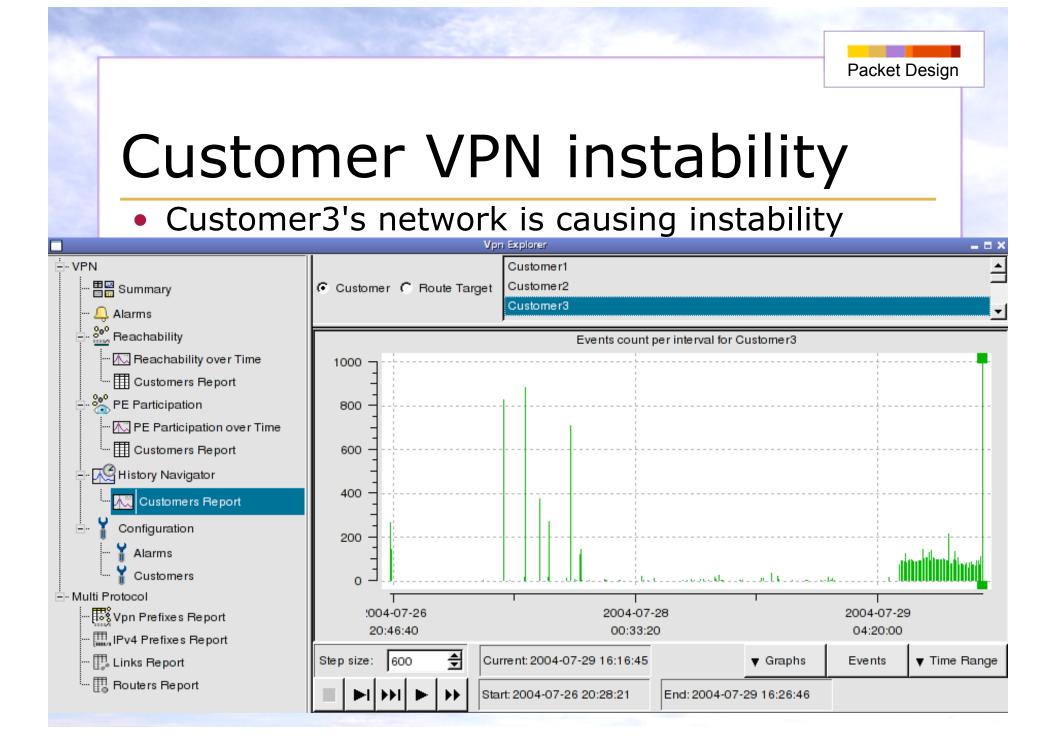
Baselining Customer VPNs

- For each route, determine how long the route was available over the last week
- If the route was available 80% of the time or longer, then include the route in the baseline
- Similarly for PEs, RDs, RTs
 - i.e. if a PE is announcing at least one route for a customer for 80% of the week, then include that PE in the baseline for that customer

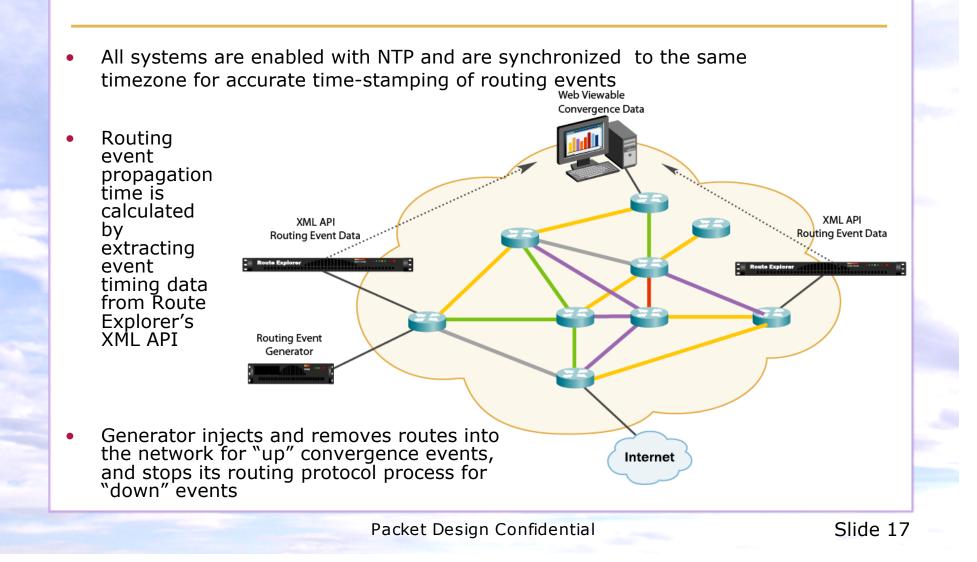


Route Deviation per Customer

VPN			Reachabilit	y Summary for VPN	Customers: DemoISPV	/PN			
🖽 🔤 Summary	Customer	Customer C Route Target Filter by: Any				Show			
Alarms	Name	Active PEs	Active Routes	Baseline Routes	Withdrawn Routes	New Routes	% Deviation	—	
🖃 🔐 Reachability	Customer58	3	10	3	0	7	70		
🕅 Reachability over Time	Customer5	10	184	86	2	100	54		
	Customer3	24	507	543	58	22	14		
PE Participation	Customer45	6	789	899	111	1	12		
	Customer9	31	88	90	5	3	8		
···· 🔼 PE Participation over Time	Customer22	7	52	57	5	0	8		
🖽 Customers Report	Customer1	9	1242	1306	68	4	5		
History Navigator	Customer2	18	248	249	7	6	5		
	Customer24	7	58	61	3	0	4		
Customers Report	Customer7	30	350	355	8	3	3		
E. Y Configuration	Customer23	9	26	27	1	0	3		
	Customer15	12	218	216	1	3	1		
- 🕺 Alarms	Customer32	4	61	62	1	0	1		
🛄 🍟 Customers	Customer50	3	397	405	8	0	1		
Multi Protocol	Customer4	6	120	120	0	0	0		
	Customer6	10	138	139	1	0	0		
1	Customer8	12	341	341	0	0	0		
IPv4 Prefixes Report	Customer10	6	24	24	0	0	0	_	
🖽 Links Report							Reloa	ad	
🖽 Routers Report	58 entries							-	
	11						Clos	_	


Breakdown Customer5's Deviation to its PEs

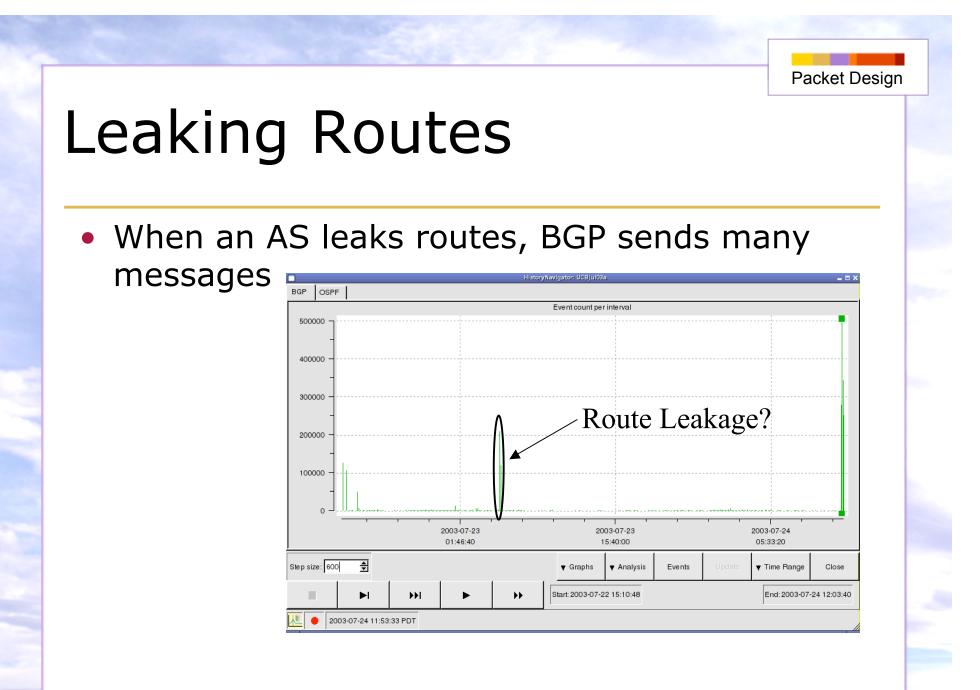
Two Questionable PEs


- It is not only that there are 100 new routes for Customer5 that is troubling
- 13 of these routes are coming from PEs that are not part of this customer's baseline PEs
 - Perhaps customer is growing in number of sites
 - Perhaps it is a result of misconfiguration and these routes belong to a different customer
 - It needs to be verified by an operator
- How long has this been going on?

Route Convergence Measurement

- Challenge: Large financial WAN RFP required routing convergence SLA
- Solution Overview:
 - Deploy multiple route analytics appliances and routing event generator to measure synthetic route event propagation delay
 - Monitors routing "convergence" through measurement of routing event propagation times
 - Uses route analytics real-time recording of all routing updates

Convergence Measurement Architecture


Packet Design

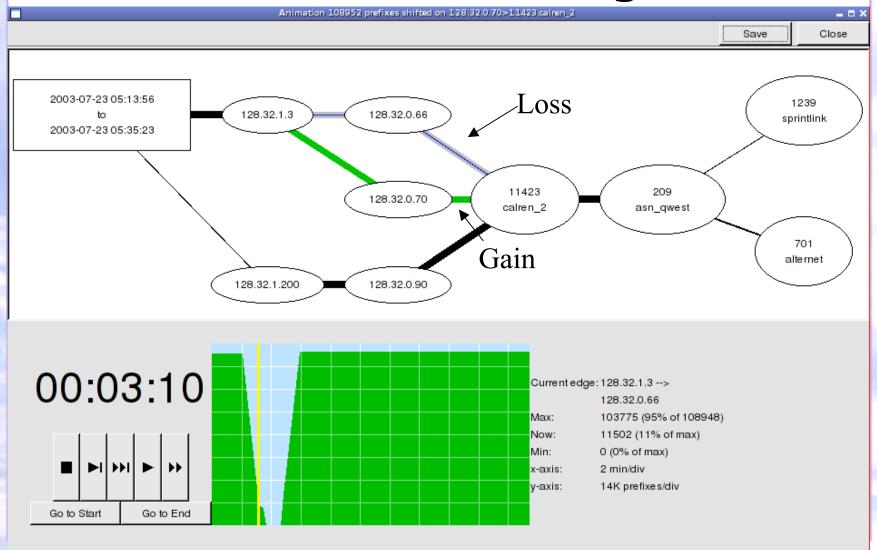
BGP Root Cause Analysis

- Hard to diagnose BGP problems:
 - BGP was designed to facilitate routing, not diagnosis.
 - Deluge of data
 - Large number of routes and paths on a router, and the number of options for each route. Differences in a route may be subtle, but important, like path length or MED, but comparing them is not simple.
 - Most minor connectivity change produces hundreds of messages and a major peering loss can generate millions.
 - Many error-prone configuration knobs
- Route analytics addresses a number of scenarios

Peering Reset Between Two ISPs

- A tier-1 ISP's customer leaked thousands of routes
- Tier-1 ISP announced them to peers
- One peer had a prefix-limit configured and reset the session severing the communication between the two ISPs
- Tier-1 ISP needed to find what were the new routes, who was injecting them

Packet Design Confidential


Slide 20

BGP Root Cause Analysis

Root Cause Analysis Results: 2003/07/23	05:05:13 to 200307-23 05:37:49				
Description	View Details				
108952 prefixes shifted on		1			
128.32.0.70>11423.calren_2	Animation				
	330709 Events				
	108952 Prefixes				
	Clos	e			
1 entry					
 RCA found only one the peering was reset, pread another peering, and the BGP had to send 33070 	efixes shifted to				

Visualization of Peering Reset

Route Leakage in an RCA Visualization

11423

cal renN

128.32.0.7

128.32.0

ucb-aug21-1.events

19:45:57 to 20:33:58

11422

cairenS

- Peer leaking routes causing sub-optimal routes

10927

pch_sd_nap

1909

alpha_nap

195

selse

 Community mishap treats commercial routes as academic

Packet Design

4637 reach(HK)

701

alternet

7018

att

3908

supernet

1239 sprint

3356

level3

19092

ta dav1

4323

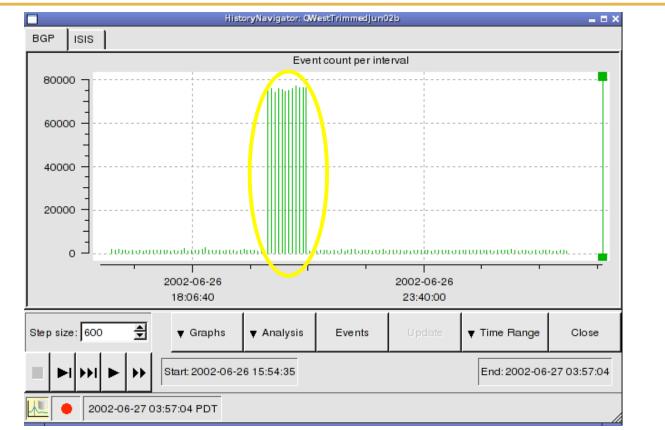
tw_comm

209

owest

2152

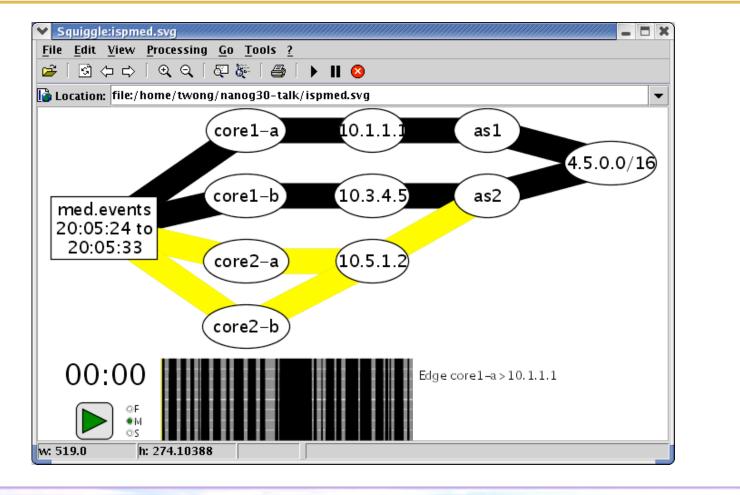
csunet_nw


Before and After Comparison

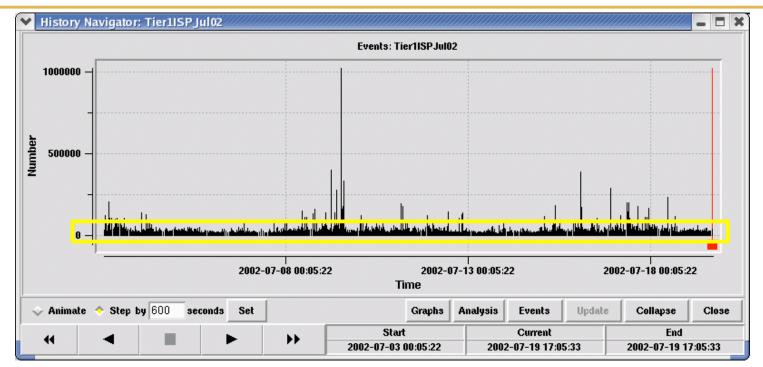
	Rib BeforeN-A	fter Comparisio	n for: BGP/AS2	5[any]	_ = ×					
Filter by: Any	<u>.</u>	•		Analyze Matching	Analyze Excluding					
Peer	Nexthop	Route Cou	int Delta	Before Count After Count						
Nexthop	128.32.0.66	9(6327	6374	102701	•	96K new routes w/ BGP			
···· Originator	128.32.0.70		072	0	6072	•				
···· Local Pref	128.32.0.90	-4	-5	125725	125680		Nexthop 128.32.0.66			
···· MED	128.32.0.249	2		0	2		1 U 120.52.0.00			
···· Communities	128.32.0.193	-1		1	0					
···· Neighbor AS	128.32.0.201	-1		1	0					
···· 2nd Hop AS					BGP Route Delta Deta	is for: BGP	P	_ = ×		
···· Origin AS	Peer BGP ID Pi	refix	Before Attri	butes			After Attributes			
···· Any AS	128.32.1.3 12	28.19.0.0/16					AS Path: 11423 209 568 721 (INCOMPLETE)			
ⁱ AS Peers	F I						Local-Pref: 80 MED: 5			
	4						Communities: 209:209 209:31272 11423:65380 11423:6538	2		
2003							Next Hop: 128.32.0.70			
	128.32.1.3 24	4.240.0.0/16		1423 209 701 (IGP)			AS Path: 11423 209 701 (IGP)			
				80 MED: 5			Local-Pref: 80 MED: 5			
	1			es: 209:888 11423:6	5350 11423:65352		Communities: 209:888 11423:65350 11423:65352			
				28.32.0.66			Next Hop: 128.32.0.70			
	128.32.1.3 24.237.0.0/16			423 209 701 8047	(IGP)	AS Path: 11423 209 701 8047 (IGP)				
				80 MED: 5			Local-Pref: 80 MED: 5			
				es: 209:888 11423:6	5350 11423:65352		Communities: 209:888 11423:65350 11423:65352			
			Next Hop: '	128.32.0.66			Next Hop: 128.32.0.70	_ _		
							Reload Clos	se		
	6072 entries									

 This was the feature used to determine the customer that leaked routes

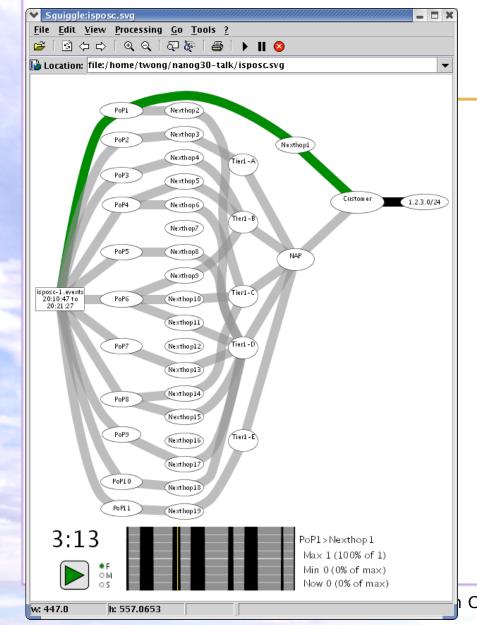
Packet Design Confidential


MED Oscillations

- MED oscillations caused BGP updates every 10s of microseconds
 - Expect very high router CPU utilizations across the network


Packet Design Confidential

MED Oscillations


Packet Design Confidential

BGP Peering Flaps

- Persistent route flapping once a minute looks like BGP noise here (yellow box)
 - This lasted for at least 1.5 months, and resulted in a very unhappy customer.

Persistent Customer Route Flaps

- Route is not flap damped
- When observed from peers of this ISP, the route is still a candidate for route flap damping
 - Customer is off the Internet

Confidential

Slide 28

Route-Flow Fusion

• How it works:

- Take limited number of flow exporters
- Use IGP/BGP to project flows across all links
- The result:
 - Arrive at network-wide traffic/flow distribution
 - Correlated routing and traffic event/change analysis

• Applications:

- Comprehensive peering and transit analysis
- Modeling of network changes on actual routing and traffic to show precise impact
- Know if network contributed to any traffic change
- Optimize capacity planning, failure response
- Service availability, customer forensics