IPv4/IPv6 Smooth Migration (IVI)

Xing Li etc. 2008-08-16

Abstract

- This presentation will introduce the concept and practice of prefix-specific and bi-direction explicit address mapping (IVI) for IPv4/IPv6 migration.
- The comparison between IVI and other mechanisms will be compared.
- The impact to the IPv4/IPv6 address assignment and allocation policy will also be discussed.

Outline

- Introduction
- Requirements
- IVI concept and practice
- Comparisons
- Impact to the address allocation and assignment policy
- Remarks

Major Issue

- IPv6 deployment is not fast enough to transition away from IPv4
- IPv4 run-rate predictions seem believable

Fundamental Reason

- The false IPv6 selling arguments
 - Restoration of the "end to end" principle
 - Restoration of Address transparency
 - Multicast
 - Better QoS (flows)
 - Embedded IPSEC
 - Auto-configuration, Plug & Play, etc
- The fundamental reason should be
 - Extend the address space to keep the universal connectivity

CNGI-CERNET2

- CNGI-CERNET2 is an IPv6 single stack network.
- The original promotion concept
 - It is free and it is light loaded.
 - The users need to export their applications into IPv6.
- But this concept did not work well.
 - The connectivity is the most important issue.
- So we developed IVI
 - IV means 4
 - VI means 6
 - IVI means 4|6 coexistence and transition
 - IVI is symmetric and both v6 and v4 initiated communication are supported

IVI draft: <u>http://www.ietf.org/internet-drafts/draft-xli-behave-ivi-00.txt</u> 6

Requirements

- Exiting approaches
 - Dual stack approach
 - IPv4 address depletion problem
 - Tunneled architectures
 - No communication between two address families
 - Translation architectures (NAT-PT)
 - Not scalable, lost end-to-end
- Requirements
 - Technical
 - End-to-end address transparency, minimum state, globally deliverable and effectively use of the global IPv4 addresses.
 - Meet different requirements of server, client and P2P
 - Independent and incremental deployable
 - Non-technical
 - Encourage the migration

The Key Concepts of IVI

- Prefix Specific Addressing and Routing
 - Maintain a clean Internet addressing and routing architecture and globally deliverable
- Bi-directional and Explicit Mapping
 - Restore the end-to-end address transparency
 - Maintain the minimum state
- Extended Address Transparency
 - Support the both IPv6 initiated and IPv4 initiated communications for every IPv6 host (not every IPv6 address)
 - Effectively use the global IPv4 addresses
 - Meet different requirements of server, client and P2P
- Protocol translation
 - SIIT
 - ICMP extension
 - Multicast extension

Terms and Abbreviations of IVI

- General
 - **IVI.**
 - **ISP(i)**
- IPv4
 - **IPG4:** An address set containing all IPv4 addresses, the addresses in this set are mainly used by IPv4 hosts at the current stage.
 - **IPS4(i):** A subset of IPG4 allocated to ISP(i).
 - **IVI4(i):** A subset of IPS4(i), the addresses in this set will be mapped to IPv6 via IVI rule and physically used by IPv6 hosts of ISP(i).
- IPv6
 - **IPG6:** An address set containing all IPv6 addresses.
 - **IPS6(i):** A subset of IPG6 allocated to ISP(i).
 - IVIG46(i): A subset of IPS6(i), an image of IPG4 in IPv6 address family via IVI mapping rule.
 - IVI6(i): A subset of IVIG46(i), an image of IVI4(i) in IPv6 address family via IVI mapping rule.
- Components
 - IVI gateway
 - IVI DNS

IVI Address Mapping

Routing and Forwarding

mroute IVI4-network IVI4-mask pseudo-address interface source-PF destination-PF mroute6 destination-PF destination-PF-pref-len

IVI Reachability Matrix

	IPG4	IVI	IPG6
IPG4	ок	ок	NO
IVI	ок	ок	ок
IPG6	NO	ок	ок

IVI Communication Scenarios (1)

IVI Communication Scenarios (2)

13

IVI Communication Scenarios (3)

14

IVI DNS Configuration

- For providing primary DNS service for IVI4(i) and IVI6(i), each host will have both A and AAAA records
- Authoritative DNS server
 - Example
 - <u>www.ivi2.org</u> A 202.38.108.2
 - <u>www.ivi2.org</u> AAAA 2001:250:ffca:266c:200::
- For resolving IVIG46(i) for IVI6(i), use IVI DNS to do the dynamic mapping based on the IVI rule.
- Caching DNS server
 - Example
 - <u>www.mit.edu</u> A
- 18.7.22.83
- <u>www.mit.edu</u> AAAA 2001:250:ff12:0716:5300::
- Implementation scope
 - Host
 - DNS server provided via DHCPv6
 - ISP

Multiplexing of the IPv4 Addresses

- Temporal Multiplexing
 - Dynamic assignment of IVI6(i)
- Port Multiplexing
 - Combine address with the port number
- Spatial Multiplexing
 - Server 1:1 mapping
 - Home server 1:M mapping (via IPv4 initiated communication)
 - Client 1:N mapping (via IPv6 initiated communication)
- Multiplexing using IPv4 NAT-PT
 - Cascade IPv4 NAT-PT and IVI (1:1 mapping)

Extended Address Transparency

- End-to-end address transparency: the source and destination addresses of the packets could be used as unique labels for the end systems (RFC2755).
- Port multiplexing extends the address transparency
 - Basic NAT 2³²
 - Extended NAT 248

Port embedding

- IPv6 client initiates the communication to the IPv4 servers
 - Method 1: port collision avoidance
 - 202.38.108.5#100 ← → 2001:250:ffca:266c:0500::81#100

 - 202.38.108.5#101 ← → 2001:250:ffca:266c:0500::82#100

 - 202.38.108.5#102 ← 2001:250:ffca:266c:0500::83#100

 - 202.38.108.5#103 ← 2001:250:ffca:266c:0500::84#100
 - Method 2: embed port range into the IVI6 addresses
 - 2001:250:ffca:266c:0500:ratio:bias:pseudo-well-know-port
- IPv4 client initiates the communication to the IPv6 servers
 - Method: provide pseudo-well-know-port via SRV DNS record (i.e. the remote IPv4 host can reach different IVI6s via different port number)
 - 202.38.108.2#81 ← 2001:250:ffca:266c:0200:3:0:81#81
 - 202.38.108.2#82 ↔ 2001:250:ffca:266c:0200:3:1:82#82
 - 202.38.108.2#83 ↔ 2001:250:ffca:266c:0200:3:2:83#83
 - 202.38.108.2#84 ← 2001:250:ffca:266c:0200:3:3:84#84

IVI Deployment Scenarios (1)

IVI Deployment Scenarios (2)

IVI Deployment Scenarios (3)

IVI Deployment Scenarios (4)

Implementation and Testing Results

• The IVI scheme presented in this document is implemented in the Linux OS

- The source code can be downloaded [http://202.38.114.1/impl/].

- CERNET (IPv4 and partially dual-stack) and CNGI-CERNET2 (pure IPv6) since March 2006 (basic implementation).
 - IVI6 server for global IPv4
 - <u>http://202.38.114.1/</u>
 - IVI6 server for global IPv6
 - http://[2001:250:ffca:2672:0100::0]/
 - IVI server for stub IPv4 (cascade)
 - http://202.38.114.129/

Comparisons (1)

24

Comparisons (2)

Comparisons (3)

- Dual-stack lite
 - 'Carrier class' is a euphemism for centralized. More semantics move to the core of the network. This is bad in and of itself. Net-heads call it 'telco-think' because it is the telco model of smarts in the core as opposed to the internet model of a simple, just forward packets, core and smart edges. - Randy
- NAT-PT
 - NATPT supports both v4 and v6 initiated, requiring a set of cumbersome techniques
- NAT64
 - NAT64 only supports v6 initiated communications
 - NAT64 and DNS64 are completelly decoupled
- IVI
 - End-to-end address transparency, minimum state, globally deliverable and effectively use of the global IPv4 addresses
 - DNS mapping is completelly decoupled
 - Meet different requirements of server, client and P2P
 - Independent and incremental deployable
 - Encourage the migration

IPv6 Assignment Policy

- Encourage ISPs to deploy their IPv6 networks and to install their IVI gateways.
 - Reserve 2001:DB8:ff00::/40 for each 2001:DB8::/32
 - Encourage ISPs to use a subset (i.e. IVI4(i)) of their own IPv4 address blocks and map it into IPv6 via the IVI scheme (i.e. IVI6(i)) for their initial deployment of IPv6.
- Encourage ISPs to increase the size of IVI4(i).
 When IVI4(i)=IPS4(i), the IPv4 to IPv6 transition for ISP(i) will be accomplished.

IPv4 Allocation Policy

- The remaining IPv4 address should be dedicated for the IVI transition use, i.e. using these blocks for the IVI6(i) deployment.
 - The users using IVI6(i) can access the IPv6 networks directly and the IPv4 networks via the IVI gateways.
- Based on multiplexing techniques, the global IPv4 addresses can be used effectively.
 - For example, with a reasonable port multiplexing ratio (say 16), one /8 can support 268M hosts. If 10 /8s can be allocated for the IVI use, it will be 2.6 billion addresses, possibly enough even for the unwired population in the world.
- The 43.0.0/8 could be a good candidate for the initial trial

Remarks

Model of the procedure for introduction of measures for address space exhaustion

Occupied v4 addresses Occupied v6 addresses Blue line: v4 Red line: v6

The IVI migration path:

Every IPv6 host (not every IPv6 address) can communicate with the global IPv4 (both IPv6 initiated and IPv4 initiated).

