IPv6 at your fingertips

APNIC 26

26th August 2008 (Tue) 18:00 – 19:00 Christchurch, New Zealand

APNIC 26

Introduction

- Presenters
 - Elly Tawhai
 - APNIC: Internet Resource Analyst/Pacific Islands liaison
 - <elly@apnic.net>
 - Geroge Michaelson
 - APNIC: Research and Development Specialist
 - <ggm@apnic.net>
 - Miwa Fujii
 - APNIC: IPv6 Programme Manager
 - <miwa@apnic.net>
 - Neil Fenemor
 - FX networks: Senior Engineer
 - Robert Bailey
 - APNIC: System Administrator
 - <rbailey@apnic.net>

APNIC

APNIC

Agenda

- How to turn on IPv6 on your PC: theory –GGM
- APNIC 26 network infrastructure – Neil
- How to turn on IPv6 on your PC: hands-on – Robert
- IPv6 statistics
 - -Elly
- Prize!

How to turn on IPv6 on your PC

Theory

🗞 APNIC

APNIC 26

Overview

- What we hope to achieve
 - Getting you online at this meeting, on IPv6 as simply as possible
 - Helping you understand the issues in an IPv6 deployment from a user perspective
- "share and enjoy"
 - Discuss the experiences, learn and improve

Can I play IPv6?

- Some Operating Systems aren't IPv6 enabled
 - Pre service pack 2 Windows XP
 - Can download IPv6 elements from Microsoft online
 - (requires valid licenced copy of XP)
 - Pre-XP Microsoft windows (NT, 95, 98)
 - Technically feasible (eg trumpet IPv6 stack) but out of scope
 - Older Linux, BSD, other UNIX
 - Versions vary, but would have to be >5y old
 - Older Mac OSX
- For some of you, regrettably possibly no.
 - May not be able to get working this time :-(

who what and where

- Acquire your IPv6 address
 - "who you are, on the network"
- Configure a DNS resolver
 - "what's the name->address mapping of the network"
- Learn a default route
 - "where do I send packets to get to anyone"
- · Sometimes, done 'all at once'
 - But sometimes, done separately
 - Worst-case, done manually
 - But, see the warnings!

Who am I?

- Two methods:
 - Stateless autoconfig
 - You make probes, the local router tells you
 - Neighbour discovery Protocol (NDP)
 - Router Discovery
 - Stateful
 - Be told by a local "authority"
 - DHCPv6
- Which you use depends on the local network, and your OS
 - May have to use a mix of both
 - May not be able to use some
 - Eg Mac OSX does not use DHCPv6 at this time

<u>What's</u> the name->address mapping

- Find a DNS resolver
 - DHCPv6 can tell you
 - But not all systems use DHCPv6
 - Current stateless autoconfig cannot tell you :-(
 - But you can configure it in statically, by hand.
 - Obvious risks when the DNS resolver changes, or you move to another network.
 - Fixed in recent RFC, still being deployed.
- Older Windows XP cannot use IPv6 to perform DNS
 - Requires a minimum of IPv4 on local network, and at least the DNS resolver to be dual-stack

Where do I send packets?

- Stateless autoconfig and DHCPv6 can both tell you this
- Or it can be statically configured
 - As for DNS, obvious risks when things change

How Safe is this?

- IPv6 is neither more or less 'safe' than IPv4
 - But, its possible more time and effort has gone into making your Ipv4 configuration secure
 - Your firewall and other protections may be IPv4 only, or weak in IPv6
 - There are probably less threats at this time, which exploit IPv6 than IPv4
 - But this situation cannot last
 - NAT and NAT-PT must not be mistaken for security
 - Address translators provide an opportunity for a firewall but its not guaranteed simply because NAT/NAT-PT happens
 - Is NAT-PT 'useful' or 'necessary evil' ?

What can I do in the Internet?

- Not all applications IPv6 aware
 - Depends how they do DNS lookups
 - Need to ask for AAAA records, as well as A records
 - -Can use proxies, forwarding services
- Not all of the rest of the world has IPv6
 - -Need protocol translation: their end, or yours
 - NAT-PT, ALGs, Teredo, 6to4, ISATAP...

Why so hard?

- Multiple competing standards
 - NDP/router-discovery vs DHCPv6
 - an RFC can say MAY
 - ...but even if it says SHOULD it might not happen
 - Eg NDP RFC permits DNS server location, but it is not always implemented/enabled
 - Also more recent RFC processes have improved this
- We're fixing the aeroplane in-flight!
 - No flag days, no outages have made people seek compromises, and sometimes work 'around' the standards rather than go back into standards processes

APNIC 26 network infrastructure

APNIC 26

APNIC 26 network infrastructure

- Two IPv6 networks
 - SSID: AAPNIC26-v6
 - IPv6 only
 - 2402:6000:4001:4::/64
 - DHCPv6
 - SSID: AAPNIC26-v6-xp
 - IPv6 + IPv4 glue for XP users
 - Since Windows XP doesn't do DNS over IPv6, this network has local RFC1918 IPv4 address space providing an IPv4 transport to a local DNS server
 - 2402:6000:4001:3::/64
 - 10.0.0/24
 - DHCPv6
 - DHCP (IPv4)
- IPv4/IPv6 dual stack network
 - SSID: AAPNIC26

💫 APNIC

APNIC 26 network infrastructure

- Applied transition mechanism – NAT-PT
 - Network Address Translation Protocol Translation
 - RFC2766
 - Cisco IOS 12.4 (15) T5 "Advanced IP Services"
 - IPv4 sites see all traffic originating from 131.203.61.0/24
 - DNS ALG
 - DNS Application Layer Gateway
 - Generates AAAA records for those DNS entries which have only A records
 - Appends the HEX equivalent IPv4 address to a set range, in this case 2402:6000:4001:FFFF::/96
 - totd software

🔗 APNIC

Are you a IPv4 sheep or a IPv6 kiwi?

- Hope we can see as many as kiwis hopping around:
 - http://www.apnic.net/meetings/26/ipv6/v6kiwi/
- The value in this experiment is:
 - Everyone attempts IPv6 connectivity to see how far we can go with IPv6

APNIC 26 IPv6: Does it work for you?

- Act one
 - IPv6 only
 - Good luck!
- Act two
 - -With IPv6/IPv4 glue
 - NAT-PT
 - DNS ALG

Act one

Q APNIC

Act two

Q APNIC

How to turn on IPv6 on your PC

Please see pdf files prepared for different Oses.

APNIC 26

IPv6 Status Update

APNIC 26

Overview

- •RIRs allocation statistics
- APNIC allocation & assignment statistics
- Assignment registration
- •Global IPv6 routing table

•Note data valid as of 20 August 2008

RIRs allocations to LIRs/ISPs

Number of allocations as 31 July 2008

APNIC 26

Q APNIC

APNIC allocations by year

APNIC allocations > /32 6 5 4 3 2 1 0 /20 /21 /22 /26 /27 /28 /29 /30 /31 Total: 20

Q APNIC

APNIC allocations by economy

Economy uptake by year

Total: 21 Economies

Q APNIC

IPv6 IX assignments

All /48s except 5 /64:

Q APNIC

IPv6 critical infrastructure assignments

APNIC 26

🖗 APNIC

IPv6 portable assignments

APNIC 26

Q APNIC

Whois assignment registration

IPv6 routing table

Data from APNIC Brisbane router on 20 August 20

